
Programming for PowerPC w/ S32 Design Studio
Programming either of the target development boards requires the use of 
the S32 Design Studio by NXP. High-level programming is done in regular C 
or C++ languages; porting this code is as simple as refactoring the C code 
of the project into the S32 Design Studio IDE. 

Libraries and Peripherals
The process becomes more involved when implementing libraries and 
using peripherals. The toolchain provides granular control over the 
processor functions. Processor clocks, timers, and subsystems must be 
individually enabled and configured. Each processor configuration has 
individually generated libraries which are referenced in the main code.

Students: BEN ETTLINGER & SUBHOJEET MUKHERJEE
Advisor: DR. JEREMY DAILY

PowerPC Development Toolchain

Stated Goal
Port a project written in C to the device with PowerPC Architecture, 
specifically the MPC 5777C-Dev B and the MPC 5748G Development 
boards pictured below:

While both development boards utilize POWER Architecture, the MPC 
5777C more closely resembles the processors found in modern ECUs 
and was the primary target for development.

Target Project
The target project is written in the C programming language and 
receives data over CAN, processes the information, and then sends a 
response over CAN. Successful implementations had already been 
written for the ARM architecture on the BeagleBone Black 
microcomputer.

MPC 5777C-Dev B DEVKIT MPC 5748G

Processor Architectures
Processor architectures are the methods used by processors to execute 
assembly/machine code. Common architectures include x86, found in most 
desktop and laptop processors and ARM, mostly found in mobile devices. 

PowerPC
PowerPC is an implementation of POWER Architecture for microprocessors 
originally introduced in 1992. PowerPC-based microprocessor are 
commonly found in both legacy and new vehicle electronic control units 
(ECUs).

Exploration into CAN on MPC 5777C Dev B
While implementation of CAN interfaces on the 5748G Devkit readily 
worked from included examples, implementation on to 5777C Dev board 
required more configuration and troubleshooting.

• Transceiver Troubleshooting w/ SPI
While the 5748G Devkit utilized a transceiver which was hardware-enabled, 
the 5777C Dev B used a different transceiver which required configuration 
over SPI (Serial Peripheral Interface), a protocol used to communicate 
between microprocessors and microchips. Facilitating this exchange 
required the enabling and configuration of a new peripheral interface on 
the development board, resulting in the simultaneous troubleshooting of 
hardware configuration, CAN peripheral configuration, and SPI peripheral 
configuration. This was achieved through the debugging interface and 
signal analysis using a Saleae logic analyzer, the output of which is seen 
below.

Saleae Signal Output

In the above screen capture we see:
• MOSI (microprocessor output)
• MISO (microchip response)
• SCLK (timing clock from microprocessor)
• CS (Chip Select which enables/disables communication with the chosen 

chip(s))
The SPI messages are shown in hexadecimal format in the purple boxes 
above the MISO and MOSI signals and were written based on information 
found in the transceiver datasheets.

CAN Messages can be seen on the CAN L signal, with the RX signal going 
live after the SPI configuration messages.

CAN H
CAN L

Saleae 
Signal 
Probes

• MOSI
• MISO
• SCLK
• CS
• CAN H
• CAN L
• TX
• RX

USB

USBJTAG

ECU

Test & Evaluation Setup

Smart Sensor Simulator 2

MPC 5777C 
Dev B Saleae 

Logic 
Analyzer

PEMicro Cyclone FX Flash 
Programmer & Debugger

BeagleBone Black w/ 
Heavy Truck Cape

Conclusion:
Programming for the PowerPC 
Architecture requires detailed
configurations for all the
peripherals and Controller 
Area Network hardware.

NXP PowerPC 
Processor slot 
on a Cummins 

ECU


